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Glutamic acid is the main excitatory amino acid in the central Table 1. Enantioselective Alkylation of the Benzophenone Imine

nervous system. The design of ligands for the various types of cc’fagf;csigea tert-Butyl Ester Using Various Phase-Transfer
glutamate receptors as potential therapeutic agents has attracted the 0

attention of numerous groupsgi-Substituted glutamate analogues, p, N\/[oj\ Qhc Q PTC(01eq P Y OMe
such as 4-substituted alkylidene glutamic acids, have been the T~ OBu* Ph}ﬁﬁko e Ceonto CO,fBu
targets of several synthetic and pharmacological stddies. Ph CH20|22 N=CPh,
The enantioselective synthesis ofamino acid derivatives 1 2 (S)-3a
employing chiral phase-transfer catalysts (PTC) represents an entry catalyst temp, °C ime. Jield, % oo e
important synthetic advancemeérEnantioselective reactions of the : ' ' '
Schiff bases of amino esters, using PTC conditions catalyzed by % jg 7;2 gg ?g 23
quaternizedCinchonaalkaloids by O’Donnelf, Corey? Lygo  and 3 4c -78 36 78 86
related systems by othef)ave been used to obtain a variety of 4 4d —78 36 82 85
4e —78 36 78 84

amino acid products with impressive levels of enantioselection using
simple procedures. However, to the best of our knowledge, there 2 The reaction was conducted with the benzophenone imine of glycine
have been no reports on the tandem conjugate addigbmina- tert-butyl esterl (1 mmol), allylic acetate2 (1 mmol), CsOHH20 (10

i 18,9 - P : . equiv), and PTC (10 mol %) in C4€l, for the given time? Isolated yield.
tion®? under phase-transfer conditions for the enantioselective ¢y, enantiopurity of model producBf3awas determined by chiral HPLC

preparation of amino acid8 Herein we report a new, general, and  analysis of the product using §8-Whelk-O1 column (Regis Technologies)
practical method for the preparation of 4-alkylidenyl glutamic acids with hexane:2-propanol as the solvent system; the resolution of the

via tandem conjugate additierelimination under PTC. enantiomers was confirmed by analysis of racemic glutanizdl ee
L . . . Supporting Information.
Targets for initial studies, which focused on standardizing the
reaction conditions and determining the scope of the methodology, J 4a Ar = 9-anthracenyl, R = allyl,
were the racemic glutamate derivativ@¢Scheme 1). X /75 X =Br
Scheme 1. Synthesis of the 4-Alkylidenyl Glutamic Acid N, 4bAr=9-anthracenyl, R=H, X=Cl
Darvatives T oGy £ AT 4¢ Ar = 2-naphthyl, R = allyl, X = Br
o \ ""'OR  4d Ar= I-naphthyl, R = allyl, X = Br
0o OAc O N 4e Ar = phenyl, R = allyl, X = Br
PN n-Buli  PhT T "OMe .
j// OtBu™ pp OMe———— CO,tBu Figure 1. Structure of the phase-transfer catalysts.
Ph THF, -78 °c
N=CPh, . . P .
1 2 (£)-3 2ausingO-allyl-N-(9-anthracenylmethyl)cinchonidinium bromide

(4a) as the PTC (CsOHH,O, CHCI,, —78 °C) gave the model
Reaction of the lithium enolate of the benzophenone imine of product §-3ain 92% yield and 92% ee (Table 1 and Figure 1).
glycine tert-butyl ester {) with allylic acetates?, prepared via Use of homogeneous reaction conditions (catalgsSchwesing-
vinylaluminatior! or Baylis—Hillman reactior? in THF at —78 er base BEMP, CkCl,, —78 °C, 24 hyed afforded §)-3ain 90%
°C for 1.5-4.5 h, gave the racemic produ@&#? A variety of types yield and 79% ee. Similarly, liquidliquid PTC @b, 50% KOH,
of allylic acetates, including aromatic, aliphatic, heterocyclic, and PhMe, 25°C, 24 h2 also gave poorer results. Variation in the
fluoroaromatic, smoothly undergo the tandem conjugate adedition  N-alkyl group on the quinuclidine core of the quaternary ammonium
elimination (see Supporting Information). It is noteworthy that, with salt 4c—4e€) also resulted in decreased yields and enantioselec-
allylic acetates that are not activated with an ester group at the tivities (Table 1). As expected from literature reports, the anthra-
2-position, palladium catalysis is required in similar reactishs.  cenylmethyl-derived catalyst4) gave the best enantioselectivity
We then investigated the enantioselective version of the tandem(gz% ee) and yieldN-Benzy! cinchonidinium bromide4g) was
conjugate additiorelimination to prepare optically active 4-alkyl-  the |east effective catalyst of those studied (84% ee), while the 2-
idenyl glutamates$ using chiral PTC. Catalysts derived from the  ang 1-naphthylmethyl-derived catalystic(and 4d, respectively)
Cinchonaalkaloids were chosen because of their demonstrated gaye intermediate resuits.
appligability in_phase-trans_fer catalysis and theirfe_lcile preparation A number of optically active 4-alkylidene glutamates were
from inexpensive and available source$The reaction ofl with prepared using the optimized conditions developed for the model
t Purdue University. phenyl-substituted produa using 4a as the PTC (Table 2).
*Indiana University Purdue University Indianapolis. Product3b, derived from the electron-poor allylic acet&ie, gave
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Table 2. Enantioselective Synthesis of 4-Alkylidenyl Glutamic Acid Scheme 2. Synthesis of 4-Substituted Pyroglutamates
Derivatives under Phase-Transfer Conditions? o o o
[¢] _,
Ph XYY" “OMe  15% Citric acid Ph™ X\ HoPd-c  Ph d
OAc O 15% Citric acd et | NH
o le\ c PTC-Br (43, 0.1eq9) RNy “OMe /\¢COQIBU e /\iﬁ“‘“ EtoAc
g OfBu *+ R OMe CsOH-H,O (10 eq) CO,tBu N=CPh, To,tBu CO,tBu
Ph CH,Cl -78 °c N=CPh, (S)-3a (S)-4 (25,4S)-5
1 2 ()3
allyl glutamic acid . . . . . . . .
enty  acetate R ime, h derivative yield, % ee, %c acid derlvat_lves, Whlc_h_ is l:_)aged_on the catal)_/tlc enantlosel_ectlve
tandem conjugate additierelimination of the Schiff base of glycine
rooza P 30 93 2 2z tert-butyl ester with activated allylic acetates under phase-transf
> 2b  4-NO,—Ph 48 §-3b 72 97 ert-butyl ester with activated allylic acetates under phase-transfer
3 2c 4-MeO-Ph 48 ©-3c 63 89 conditions. The simple procedure and high enantioselectivity of the
4 2d  2-thienyl 48 ©-3d 90 86 process offer a practical route to these important targets.
5 2e 2-pyridinyl 34 ©-3e 72 82
6 2f 2,6-RPh 48 ©-3f 68 80 )
7 2g "Pr 34 ©-3g 82 82 Acknowledgment. Dedicated to the memory of Professor
8 2h  Bu 40 ©-3h 63 85 Herbert C. Brown.We gratefully acknowledge the National Institutes

aThe reaction was conducted with the benzophenone imine of glycine Of Health (GM 28193) for support of this research.
tert-butyl esterl (1 mmol), allylic acetate2 (1 mmol), szOHHZO (20
equiv), andda (10 mol %) in CHCI, for the given time” Isolated yield. : : : . : :
c(I1Ena21tiopuriti«£.s of the groduct§)(3 were (;Jetermined by chiral yHPLC Supporting Information A"a"ak_"e- Exper!mentgl details, spectral
analysis of the product using §9)-Whelk-O1 column (Regis Technologies) ~ data, and X-ray crystal data. This material is available free of charge
with hexane:2-propanol as the solvent system; in each case, the resolutionvia the Internet at http://pubs.acs.org.
of the enantiomers was confirmed by analysis of racemic glutama}es (
see Supporting Information.
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